Final Project

Taylor Darneille

The Fundamental Group of a Surface

Taylor Darneille https://sites.google.com/a/dons.usfca.edu/surfacegroupsbasics/

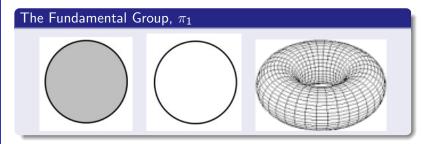
University of San Francisco San Francisco, CA

Math 435 Final Presentation

Introduction

Final Project

Taylor Darneille Surface Groups provide a cornerstone for the study of Algebraic Topology, which develops methods for understanding and analyzing topological spaces through algebraic means.



"Simple Descriptions": genus (holes) \longleftrightarrow fundamental group

Motivation

Final Project

Taylor Darneille <u>Problem</u>: Just like a group, a single topological space can wear an infinite number of disguises!

In order to study surfaces algebraically, we need to be able to tell what kind of space we're looking at.

<u>Solution</u>: The Fundamental Group is a topological invariant! That is, two homeomorphic topological spaces have isomorphic fundamental groups.

History

Final Project

Taylor Darneille

- (1752) Euler Characteristic
- (1841) Abel defines genus
- (1851) Riemann relates the Euler Characteristic to genus in his development of "Riemann Surfaces"
- (1863) Mobius classifies all (orientable, funny enough) closed surfaces in \mathbb{R}^3 by genus / Euler Characteristic

Breakthrough: (1871) Betti numbers, which equate to the genus / EC of a surface, could be used on surfaces in higher dimensions that were previously unclassified!

Are Betti numbers enough to classify *all* surfaces? Cue Poincaré...

Analysis Situs

Final Project

Taylor Darneille

- (1895) Analysis situs \leftrightarrow geometry of position \leftrightarrow topology
- "... geometry is the art of reasoning well from badly drawn figures; however, these figures, if they are not to deceive us, must satisfy certain conditions; the proportions may be grossly altered, but the relative positions of the different parts must not be upset." (Stillwell's Translation)
- In his investigation, Poincaré developed the Fundamental Group in order to test the rigor of Betti numbers
- <u>Punchline</u>: Poincaré found several surfaces whose Betti numbers were the same but their fundamental groups were different!

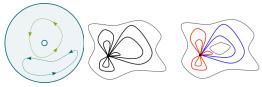
What is a Fundamental Group?

Final Project

Taylor Darneille

Some quick and dirty definitions...

- Loop (X Path-Connected): $\alpha(s) : [0,1] \to X$ • $\alpha(0) = \alpha(1)$
- Homotopy: $H(s,t): [0,1] \times [0,1] \rightarrow X;$ $H(s,t) = H_t(s)$
 - H takes one loop $\alpha \text{, and morphs it into }\beta$
 - s is the same as before, t indicates the interim loops ${\it H}_{\rm 0}=\alpha$, ${\it H}_{\rm 1}=\beta$
 - illustrate with string analogy on board
 - If such a function exists, α is homotopic to β
- When are two loops in X not homotopic?



• Homotopy Classes, $< \alpha >$

The Trivial Fundamental Group

Final Project

Taylor Darneille

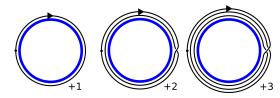
- Homotopy Classes of a space, X, form the Fundamental Group, $\pi(X)$
 - Operation: concatenation \longleftrightarrow composition
 - Assosciativity? $<\alpha> \bullet <\beta> = <\alpha \bullet \beta> = <\alpha \circ \beta>$
 - Identity $<\epsilon>$? basepoint
 - Inverses (< α >)⁻¹ ? < α^{-1} >
- Loops in the disk illustrate on board
 - $H(s,t) = H_t(s) = \alpha(s) + t(x_0 \alpha(s))$
 - How many classes do we have? Just one!
 - $\pi_1(D^2) \cong \{\epsilon\}$
 - applies to all convex subsets of Euclidean space
- Loops in the sphere illustrate on board
 - $\pi_1(S^2) \cong \{\epsilon\}$
- Simply Connected

S1 : The Circle

Final Project

Taylor Darneille

• $\alpha, \beta \in S^1$, when do we have $<\alpha > \neq <\beta >$?



- Define $\bar{\alpha}:[0,1]\to\mathbb{R}$ to measure the net angle
 - $\alpha(t) = (\cos(\bar{\alpha}(t)), \sin(\bar{\alpha}(t)))$, $\bar{\alpha}(0) = 0$
 - What is $\bar{\alpha}(1)$? $(2\pi)k$ for some $k \in \mathbb{N}$
- Define $deg\alpha = \frac{1}{2\pi}\bar{\alpha}(1)$
 - Theorem : $\alpha, \beta \in S^1$ homotopic $\iff \deg \alpha = \deg \beta$
 - Define $\deg < \alpha > = \deg \alpha$
 - lemma : (< α > < beta >) = deg < α > + deg < β >

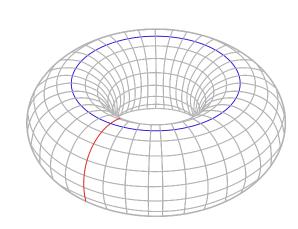
What does the group look like? $\pi_1(S^1) \cong \mathbb{Z}$

T2 : The Torus

 $T^2 = S^1 x S^1 \rightarrow$

Final Project

Taylor Darneille



$$\pi_1(T^2) = \pi_1(S^1 \times S^1) = \pi_1(S^1) \times \pi_1(S^1) = \mathbb{Z} \times \mathbb{Z}$$

Bibliographication

Final Project

Taylor Darneille

References

- Algebraic Topology, Allen Hatcher, Cambridge University Press, 2002.
- Papers on Topology: Analysis Situs and Its Five Supplements, Henri Poincaré, Translated by John Stillwell, 2009, PDF:

http://www.maths.ed.ac.uk/ aar/papers/poincare2009.pdf

Topology Now, Robert Messer and Philip Straffin, Mathematical Association of America, 2006.